Zusammenfassung.
Das sympathische Nervensystem kontrolliert zusammen mit dem Parasympathikus alle vegetativ
innervierten Strukturen und Organe des Körpers. Noradrenalin, Adrenalin und Dopamin
werden als körpereigene Katecholamine im sympathischen Nervensystem gebildet und entfalten
ihre spezifischen Wirkungen über Adrenozeptoren, Dopamin zusätzlich über dopaminerge
Rezeptoren. Die „klassische” Gruppierung der Adrenozeptoren bestand aus α1 -, α2 -, β1 - und β2 -Subtypen, die in den letzten Jahren durch Gentypisierung weiter differenziert wurden.
Adrenozeptoren, in die Zellmembran eingelagerte Proteine, binden auf der Zellaußenseite
den Agonisten und setzen auf der Zellinnenseite über eine Interaktion mit G-Proteinen
die Erregung in einen intrazellulären Effekt um. Auf Grund seiner hohen Potenz an
den kardialen β-Adrenozeptoren führt Adrenalin zu einem ausgeprägten Anstieg der Herzfrequenz
und des Herzzeitvolumens und bei einer Dosierung > 0,1 µg/kg·min über die Stimulierung
der α-Adrenozeptoren zu einem deutlichen Anstieg des peripheren Widerstandes. Das
Wirkprofil von Noradrenalin zeichnet sich durch einen vorherrschenden Effekt auf α-Adrenozeptoren
aus, wodurch die Herzfrequenz trotz gleichzeitiger Stimulierung der kardialen β1 -Adrenozeptoren weniger ansteigt als unter Adrenalin. Dopamin hingegen ist an den
β- und α-Adrenozeptoren ein niedrig potentes Katecholamin, bewirkt aber durch einen
spezifischen Effekt an dopaminergen Rezeptoren zusätzlich eine Vasodilatation in der
Niere und im Splanchnikusgebiet. Dobutamin, ein relativ spezifischer Aktivator der
β-Adrenozeptoren, führt im Gegensatz zu Dopamin zur Abnahme des pulmonalen Gefäßwiderstandes.
Dopexamin wirkt bevorzugt an β2 -Adrenozeptoren und in geringerem Maße an dopaminergen Rezeptoren, woraus insgesamt
eine Vasodilatation resultiert. Orciprenalin stimuliert praktisch ausschließlich β-Adrenozeptoren
und führt zu einem Anstieg der Herzfrequenz und des Herzzeitvolumens kombiniert mit
einem Abfall des systemischen Gefäßwiderstandes. Phosphodiesterase-III-Hemmer erhöhen
unabhängig von Adrenozeptoren den intrazellulären cAMP Spiegel durch Blockade der
abbauenden Enzyme und wirken positiv inotrop und vasodilatierend.
All involuntary innervated structures of the body are controlled by the sympathetic
and parasympathetic nervous system. Adrenaline, noradrenaline and dopamine are endogenous
catecholamines binding to adrenergic and dopaminergic receptors, respectively, to
mediate their clinical effects. Adrenoceptors are classified as α1 , α2 , β1 and β2 subtypes which were even further subcharacterized the recent years. Adrenoceptors
are membrane proteins interacting with the agonist and, thus, inducing G-protein mediated
intracellular effects. Adrenaline induces an extensive increase of heart rate and
stroke volume mediated by β-adrenoceptors and significantly enhances peripheral vascular
resistance by α-adrenoceptor stimulation, when administered beyond 0.1 µg/kg·min.
In contrast, the clinical effects of noradrenaline are predominantly characterized
by α-adrenoceptor stimulation resulting in a less pronounced increase of heart rate.
Dopamine, less potent on adrenoceptors, shows additional effects on renal as well
as on splanchnic circulation mediated by dopaminergic receptors. Dobutamine, primarily
acting on β-adrenoceptors, results in positive inotropic effects without an increase
in vascular resistance. Dopexamine, a synthetic catecholamine, induces vasodilation
via β2 -adrenoceptor stimulation and potentially increases splanchnic blood flow by additional
effects on dopaminergic receptors. Isoproterenol, the classical β-adrenoceptor agonist,
mediates positive inotropic effects and causes a major increase in heart rate and
a significant decrease of systemic vascular resistance. Independent on adrenoceptors,
phosphodiesterase-III-inhibitors exert positiv inotropic and vasodilating activity
by an increase in intracellular cAMP concentration induced by inhibition of cAMP hydrolysis.
Schlüsselwörter:
Sympathikus - Katecholamine - & - 945;- und & - 946;-Adrenozeptoren - dopaminerge
Rezeptoren
Key words:
Sympathetic nervous system - Catecholamines - Receptors, adrenergic, alpha, beta,
dopamine
Literatur
1
Lewandowsky M.
Über eine Wirkung des Nebennierenextraktes auf das Auge.
Zent. Bl. Physiol..
1898;
12
599-600
2
Oliver G, Schafer E A.
The physiological effects of extracts of the suprarenal capsules.
J. Physiol..
1895;
18
230-276
3
Baumann E.
Intrakardiale Adrenalininjektion bei akuter Herzlähmung.
Schweiz. Med. Wochenschr..
1923;
53
198-200
4
Ahlquist R P.
A study of the adrenotropic receptors.
Am. J. Physiol..
1948;
153
586-600
5
Lands A M, Arnold A, McAuliff J P, Luduena F P, Brown T G.
Differentiation of receptor systems activated by sympathomimetic amines.
Nature.
1967;
214
597-598
6
Smiley R M, Kwatra M M, Schwinn D A.
New developments in cardiovascular adrenergic receptor pharmacology: Molecular mechanisms
and clinical relevance.
J. Cardiothorac. Vasc. Anesth..
1998;
12
80-95
7 Starke K.
Pharmakologie noradrenerger und adrenerger Systeme. In: Forth W, Henschler D, Rummel W, Starke K (Hrsg.) Allgemeine und spezielle Pharmakologie
und Toxikologie. 7. Aufl. Spektrum Heidelberg; 1996: 161-200
8 Lefkowitz R J, Hoffman B B, Taylor P.
Neurotransmission. In: Hardman JG, Goodman Gilman A, Limbird LE (Hrsg.) Goodman & Gilman's The Pharmacological
Basis of Therapeutics. 9. Aufl. McGraw-Hill New York; 1995: 105-140
9
Insel P A.
Adrenergic receptors - evolving concepts and implications.
N. Engl. J. Med..
1996;
334
580-585
10
Terzic A, Pucéat M, Vassort G, Vogel S M.
Cardiac α1 -Adrenoceptors: an overview.
Pharmacol. Rev..
1993;
45
147-175
11 Brodde O-E.
Stellenwert der myokardialen Adrenozeptoren und ihre Bedeutung für die Therapie. In: Pasch T, Schmid ER (Hrsg.) Anästhesie und kardiovaskuläres System (Klinische
Anästhesiologie und Intensivtherapie). Bd. 41 Springer Berlin; 1991: 72-80
12
Lönnqvist F, Krief S, Strosberg A D, Nyberg S, Emorine L J, Arner P.
Evidence for a functional β3 -adrenoceptor in man.
Br. J. Pharmacol..
1993;
110
929-936
13
Lee M R.
Dopamine and the kidney: ten years on.
Clin. Sci..
1993;
84
357-375
14
Olsen N V, Lund J, Jensen P F, Espersen K, Kanstrup I L, Plum I, Leyssac P P.
Dopamine, dobutamine, and dopexamine: A comparison of renal effects in unanesthetized
human volunteers.
Anesthesiology.
1993;
79
685-694
15
Orme M L'E, Breckenridge A, Dollery C T.
The effects of long term administration of dopamine on renal function in hypertensive
patients.
Eur. J. Clin. Pharmacol..
1973;
6
l50-155
16 Melmon K L.
The endocrinologic function of selected autacoids: Catecholamines, acetylcholine,
serotonin, and histamine. In: Williams RH (Hrsg.) Textbook of Endocrinology. 6. Aufl. W.B. Saunders Philadelphia;
1981: 515-588
17
Lefkowitz R J, Coteccia S, Samama P, Costa T.
Constitutive activity of receptors coupled to guanin nucleotide regulatory proteins.
Trends Pharmacol. Sci..
1993;
14
303-307
18
Samama P, Pei G, Costa T, Coteccia S, Lefkowitz R J.
Negative antagonists promote an inactive conformation of the β2 -adrenergic receptor.
Mol. Pharmacol..
1994;
45
390-394
19
Schwinn D A.
Adrenoceptors as models for G protein-coupled receptors: structure, function and regulation.
Br. J. Anaesth..
1993;
71
77-85
20
Gilman A G.
G proteins and dual control of adenylate cyclase.
Cell.
1984;
35
577-579
21
Gierschik P, Grandt R, Marquetant R, Jakobs K H.
Role of G-proteins in signal transduction.
J. Cardiovasc. Pharmacol..
1987;
10 (Suppl. 4)
6-10
22
Gilman A G.
G proteins: transducers of receptor-generated signals.
Annu. Rev. Biochem..
1987;
56
615-649
23
Neer E J, Clapham D E.
Roles of G protein subunites in transmembrane signaling.
Nature.
1988;
333
129-134
24
Freissmuth M, Casey P J, Gilman A G.
G proteins control diverse pathways of transmembrane signaling.
FASEB J..
1989;
3
2125-2130
25
Sutherland E W, Robinson G A, Butcher R W.
Some aspects of the biological role of adenosine 3,5-monophosphate (cycl.-AMP).
Circulation.
1968;
37
279-306
26
Hers H G, Schaftingen E.
Fructose 2,6-bisphosphate two years after its discovery.
Biochem. J..
1980;
206
1-12
27
Reuter H.
Calcium channel modulation by neurotransmitters, enzymes and drugs.
Nature.
1983;
301
569-574
28
Hausdorff W P, Caron M G, Lefkowitz R J.
Turning off the signal: Desensitization of β-adrenergic receptor function.
FASEB J..
1990;
4
2881-2889
29
Lohse M J, Benovic J L, Codina J, Caron M G, Lefkowitz R J.
β-Arrestin: A protein that regulates β-adrenergic receptor function.
Science.
1990;
248
1547-1550
30
Bristow M R, Hershberger R A, Port J D, Gilbert E M, Sandoval A, Rasmussen R, Cates A E,
Feldman A M.
β-adrenergic pathways in nonfailing and failing human ventricular myocardium.
Circulation.
1990;
82 (Suppl. I)
12-25
31
Collins S, Caron M G, Lefkowitz R J.
Regulation of adrenergic receptor responsiveness through modulation of receptor gene
expression.
Annu. Rev. Physiol..
1991;
53
497-508
32
Aarons R D, Molinoff P B.
Changes in the density of beta adrenergic receptors in rat lymphocytes, heart and
lung after chronic treatment with propranolol.
J. Pharmacol. Exp. Ther..
1982;
221
439-443
33 Brodde O-E.
Prinzipien der rationalen Katecholamintherapie. In: Radke J (Hrsg.) Refresher Course. Aktuelles Wissen für Anästhesisten. Springer
Berlin; 1995: 89-102
34
Cohn J N.
Drug therapy: The management of chronic heart failure.
N. Engl. J. Med..
1996;
335
490-498
35
Bristow M R, Gilbert E M.
Improvement in cardiac myocyte function by biological effects of medical therapy:
a new concept in the treatment of heart failure.
Eur. Heart J..
1995;
16 (suppl. F)
20-31
36
Collins S, Caron M G, Lefkowitz R J.
β-adrenergic receptors in hamster smooth muscle cells are transcriptionally regulated
by glucocorticoids.
J. Biol. Chem..
1988;
263
9067-9070
37
Collins S, Bouvier M, Bolanowski M A, Caron M G, Lefkowitz R J.
Cyclic AMP stimulates transcription of the β2 -adrenergic receptor gene in response to short term agonist exposure.
Proc. Natl. Acad. Sci..
1989;
86
4853-4857
38
Saito T, Takanashi M, Gallagher E, Fuse A, Suzaki S, Inagaki O, Yamada K, Ogawa R.
Corticosteroid effect on early beta-adrenergic down-regulation during circulatory
shock: hemodynamic study and beta-adrenergic receptor assay.
Intensive Care Med..
1995;
21
204-210
39
Anhäupl T, Liebl B, Trunk E, Träger K, Ensinger H, Georgieff M.
Evidence for inverse regulation of high and low affinity binding sites for (-)125 Iodocyanopindolol in human mononuclear leucocytes during epinephrine infusion.
J. Recept. Res..
1993;
13
355-367
40
Kaufmann T M, Horton J W.
Characterization of cardiac β-adrenergic receptors in the guinea pig heart: application
to study of β-adrenergic receptors in shock models.
J. Surg. Res..
1993;
55
516-523
41
Booth J V, Landolfo K P, Chesnut L C, Bennett-Guerrero E, Gerhardt M A, Atwell M D,
El-Moalem H E, Smith M S, Funk B L, Kuhn C M, Kwatra M M, Schwinn D A.
Acute depression of myocardial β-adrenergic receptor signaling during cardiopulmonary
bypass - impairment of the adenylyl cyclase moiety.
Anesthesiology.
1998;
89
602-611
42
Schwinn D A, Leone B J, Spahn D R, Chesnut L C, Page S O, McRae R L, Liggett S B.
Desensitization of myocardial β-adrenergic receptors during cardiopulmonary bypass.
Evidence for early uncoupling and late downregulation.
Circulation.
1991;
84
2559-2567
43 Werdan K.
Towards a more causal treatment of septic cardiomyopathy. In: Vincent J-L (Hrsg.) Yearbook of Intensive Care and Emergency Medicine. Springer
Berlin; 1995: 517-538
44
Romano F D, Jones S B.
Alterations in β-adrenergic stimulation of myocardial adenylate cyclase in endotoxic
rats.
Am. J. Physiol..
1986;
250
R358-R364
45
Singh M, Nottermann D A, Metakis L.
Tumor necrosis factor produces homologous desensitization of lymphocyte β2 -adrenergic responses.
Circ. Shock.
1993;
39
275-278
46
Lemoine H, Teng K J, Slee S J, Kaumann A J.
On minimum cyclic AMP formation rates associated with positive inotropic effects mediated
through β1 -adrenoceptors in kitten myocardium.
Naunyn-Schmiedeberg's Arch. Pharmacol..
1989;
339
113-128
47
Brown L, Deighton N M, Bals S, Söhlmann W, Zerkowski H-R, Michel M C, Brodde O-E.
Spare receptors for β-adrenoceptor-mediated positive inotropic effects of catecholamines
in the human heart.
J. Cardiovasc. Pharmacol..
1992;
19
222-232
48
Kaumann A J, Lemoine H, Schwederski-Menke U, Ehle B.
Relations between β-adrenoceptor occupancy and increases of contractile force and
adenylate cyclase activity induced by catecholamines in human ventricular myocardium.
Naunyn-Schmiedeberg's Arch. Pharmacol..
1989;
339
99-112
49
Prielipp R C, MacGregor D A, Royster R L, Kon N D, Hines M H, Butterworth J F.
Dobutamine antagonizes epinephrine's biochemical and cardiotonic effects.
Anesthesiology.
1998;
89
49-57
50
Dale H H.
On some physiologic actions of ergot.
J. Physiol..
1906;
35
163-206
51
Steen P A, Tinker J H, Pluth J R, Barnhorst D A, Tarhan S.
Efficacy of dopamine, dobutamine, and epinephrine during emergence from cardiopulmonary
bypass in man.
Circulation.
1978;
57
378-384
52
Giraud G D, MacCannell K L.
Decreased nutrient blood flow during dopamine- and epinephrine-induced intestinal
vasodilatation.
J. Pharmacol. Exp. Ther..
1984;
230
214-220
53
Meier-Hellmann A, Reinhart K, Bredle D L, Specht M, Spies C D, Hannemann L.
Epinephrine impairs splanchnic perfusion in septic shock.
Crit. Care Med..
1997;
25
399-404
54
Levy B, Bollaert P-E, Charpentier C, Nace L, Audibert G, Bauer P, Nabet P, Larcan A.
Comparison of norepinephrine and dobutamine to epinephrine for hemodynamics, lactate
metabolism, and gastric tonometric variables in septic shock: a prospective, randomized
study.
Intensive Care Med..
1997;
23
282-287
55
Robertson C, Steen P, Adgey J, Bossaert L, Carli P, Chamberlain D, Dick W, Ekstrom L,
Hapnes S A, Holmberg S, Juchems R, Kette F, Koster R, Latorre F J, Lindner K, Perales N.
The 1998 European Resuscitation Council guidelines for adult advanced life support.
Resuscitation.
1998;
37
81-90
56
Nadkarni V, Hazinski M F, Zideman D, Kattwinkel J, Quan L, Bingham R, Zaritsky A,
Bland J, Kramer E, Tiballs J.
Paediatric life support. An advisory statement by the paediatric life support working
group of the international liaison committee on resuscitation.
Resuscitation.
1997;
34
115-127
57
MacGregor D A, Prielipp R C, Butterworth J F, James R L, Royster R L.
Relative efficacy and potency of ß-adrenoceptor agonists for generating cAMP in human
lymphocytes.
Chest.
1996;
109
194-200
58
Redl-Wenzl E M, Armbruster C, Edelmann G, Fischl E, Kolacny M, Wechsler-Fördös A,
Sporn P.
The effects of norepinephrine on hemodynamics and renal fanction in severe septic
shock states.
Intensive Care Med..
1993;
19
151-154
59
Meadows D, Edwards J D, Wilkins R G, Nightingale P.
Reversal of intractable septic shock with norepinephrine therapy.
Crit. Care Med..
1988;
16
663-666
60
Martin C, Perrin G, Saux P, Papazian L, Gouin F.
Effects of norepinephrine on right ventricular function in septic shock patients.
Intensive Care Med..
1994;
20
444-447
61
Zhang H, Smail N, Cabral A, Rogiers P, Vincent J-L.
Effects of norepinephrine on regional blood flow and oxygen extraction capabilities
during endotoxic shock.
Am. J. Respir. Crit. Care Med..
1997;
155
1965-1971
62
Marik P E, Mohedin M.
The contrasting effects of dopamine and norepinephrine on systemic and splanchnic
oxygen utilization in hyperdynamic sepsis.
J. Am. Med. Ass..
1994;
272
1354-1357
63
Meier-Hellmann A, Reinhart K.
Effects of catecholamines on regional perfusion and oxygenation in critically ill
patients.
Acta Anaesthesiol. Scand..
1995;
39 (Suppl. 107)
239-248
64 Hoffman B B, Lefkowitz R J.
Catecholamines, sympathomimetic drugs, and adrenergic receptor antagonists. In: Hardman JG, Goodman Gilman A, Limbird LE (Hrsg.) Goodman & Gilman's The Pharmacological
Basis of Therapeutics. 9. Aufl. McGraw-Hill New York; 1995: 199-248
65
Schaer G L, Fink M P, Parrillo J E.
Norepinephrine alone versus norepinephrine plus low-dose dopamine: enhanced renal
blood flow with combination pressor therapy.
Crit. Care Med..
1985;
13
492-496
66
Richer M, Robert S, Lebel M.
Renal hemodynamics during norepinephrine and low-dose dopamine infusions in man.
Crit. Care Med..
1996;
24
1150-1156
67
Juste R N, Panikkar K, Soni N.
The effects of low-dose dopamine infusion on haemodynamic and renal parameters in
patients with septic shock requiring treatment with noradrenaline.
Intensive Care Med.
1998;
24
564-568
68
Prewitt R M.
Hemodynamic management in pulmonary embolism and acute hypoxemic respiratory failure.
Crit. Care Med..
1990;
18
61-69
69 Neidhart P, Fuchs T.
Anästhesiologische und therapeutische Besonderheiten bei Rechtsherzinsuffizienz. In: Pasch T, Schmid ER (Hrsg.) Anästhesie und kardiovaskuläres System (Klinische
Anästhesiologie und Intensivtherapie, Bd. 41). Springer Berlin; 1991: 93-100
70 Tarnow J. Anaesthesie und Kardiologie in der Herzchirurgie. Springer Berlin; 1983
71
Laver M B.
Myocardial ischaemia. Dilemma between information available and information demand.
Br. Heart J..
1983;
50
223-230
72
Hess W, Klein W, Mueller-Busch C, Tarnow J.
Haemodynamic effects of dopamine and dopamine combined with nitroglycerin in patients
subjected to coronary bypass surgery.
Br. J. Anaesth..
1979;
51
1063-1069
73 Gabel J C.
Dopamine: do the risks outweigh the benefits? . In: Lawin P, Peter K, Prien T (Hrsg.) Intensivmedizin 1995: Praxis der Intensivbehandlung
(Schriftenreihe Intensivmedizin, Notfallmedizin, Anästhesiologie; Bd. 85). Thieme
Stuttgart; 1995: 78-90
74
Duke G J, Bersten A D.
Dopamine and renal salvage in the critically ill patient.
Anaesth. Intens. Care.
1992;
20
277-302
75
Hilberman M, Maseda J, Stinson E B, Derby G C, Spencer R J, Miller D C, Oyer P E,
Myers B D.
The diuretic properties of dopamine in patients after open-heart operation.
Anesthesiology.
1984;
61
489-494
76
Vendegna T R, Anderson R J.
Are dopamine and/or dobutamine renoprotective in intensive care unit patients?.
Crit. Care Med..
1994;
22
1893-1894
77
Duke G J, Briedis J H, Weaver R A.
Renal support in critically ill patients: low-dose dopamine or low-dose dobutamine?.
Crit. Care Med..
1994;
22
1919-1925
78
Lherm T, Troche G, Rossignol M, Bordes P, Zazzo J F.
Renal effects of low-dose dopamine in patients with sepsis syndrome or septic shock
treated with catecholamines.
Intensive Care Med..
1996;
22
213-219
79
Swygert T H, Roberts L C, Valek T R, Brajtbord D, Brown M R, Gunning T C, Paulsen A W,
Ramsay M A.
Effect of intraoperative low-dose dopamine on renal function in liver transplant recipients.
Anesthesioloy.
1991;
75
571-576
80
Baldwin L, Henderson A, Hickman P.
Effect of postoperative low-dose dopamine on renal function after elective major vascular
surgery.
Ann. Intern. Med..
1994;
120
744-747
81
Myles P S, Buckland M R, Schenk N J, Cannon G B, Langley M, Davis B B, Weeks A M.
Effect of “renal dose” dopamine on renal function following cardiac surgery.
Anaesth. Intens. Care.
1993;
21
56-61
82
Thompson B T, Cockrill B A.
Renal-dose dopamine: a siren song?.
Lancet.
1994;
344
7-8
83
Szerlip H M.
Renal-dose dopamine: fact and fiction.
Ann. Intern. Med..
1991;
115
153-154
84
Vincent J-L.
Renal effects of dopamine: can our dream ever come true?.
Crit. Care. Med..
1994;
22
5-6
85
Kindgen-Milles D, Tarnow J.
Niedrig dosiertes Dopamin verbessert die Nierenfunktion: Derzeitiger Kenntnisstand
und Bewertung einer kontroversen Diskussion.
Anästh. Intensivmed. Notfallmed. Schmerzther..
1997;
32
333-342
86
Berghe G, Zegher F, Lauwers P.
Dopamine suppresses pituitary function in infants and children.
Crit. Care Med..
1994;
22
1747-1753
87
Berghe G, Zegher F.
Anterior pituitary function during critical illness and dopamine treatment.
Crit. Care Med..
1996;
24
1580-1590
88
Devins S S, Miller A, Herndon B L, O'Toole L, Reisz G.
Effects of dopamine on T-lymphozyte proliferative responses and serum prolactin concentrations
in critically ill patients.
Crit. Care Med..
1992;
20
1644-1649
89
Munn J, Tooley M, Bolsin S, Hronek I, Lowson S, Willcox J.
Effect of metoclopramide on renal vascular resistance index and renal function in
patients receiving a low-dose infusion of dopamine.
Br. J. Anaesth..
1993;
71
379-382
90 Niemer M.
Herz und Kreislauf. In: Niemer M, Nemes C, Lundsgaard-Hansen P, Blauhut B (Hrsg.) Datenbuch Intensivmedizin. 3.
Aufl. Gustav Fischer Stuttgart; 1992: 365-727
91
Meier-Hellmann A, Bredle D L, Specht M, Spies C, Hannemann L, Reinhart K.
The effects of low-dose dopamine on splanchnic blood flow and oxygen uptake in patients
with septic shock.
Intensive Care Med..
1997;
23
31-37
92
Williams J F, Bristow M R, Fowler M B, Francis G S, Garson A, Gersh B J, Hammer D F,
Hlatky M A, Leier C V, Packer M, Pitt B, Ullyot D J, Wexler L F, Winters W L.
Guidelines for the evaluation and management of heart failure.
Circulation.
1995;
92
2764-2784
93
Nevière R, Mathieu D, Chagnon J-L, Lebleu N, Wattel F.
The contrasting effects of dobutamine and dopamine on gastric mucosal perfusion in
septic patients.
Am. J. Respir. Crit. Care Med..
1996;
154
1684-1688
94
Levy B, Bollaert P-E, Lucchelli J-P, Sadoune L-O, Nace L, Larcan A.
Dobutamine improves the adequacy of gastric mucosal perfusion in epinephrine-treated
septic shock.
Crit. Care Med..
1997;
25
1649-1654
95 Reinhart K, Meier-Hellmann A, Hannemann L.
Regional versus global indicators of tissue oxygenation. In: Vincent J-L (Hrsg.) Yearbook of Intensive Care and Emergency Medicine. Springer
Berlin; 1994: 191-199
96
Ruokonen E, Uusaro A, Alhava E, Takala J.
The effect of dobutamine infusion on splanchnic blood flow and oxygen transport in
patients with acute pancreatitis.
Intensive Care Med..
1997;
23
732-727
97
Parviainen I, Ruokonen E, Takala J.
Dobutamine-induced dissociation between changes in splanchnic blood flow and gastric
intramucosal pH after cardiac surgery.
Br. J. Anaesth..
1995;
74
277-282
98
Smith G W, O'Connor S E.
An introduction to the pharmacologic properties of Dopacard (dopexamine hydrochloride).
Am. J. Cardiol..
1988;
62
9-17C
99
Brodde O-E.
The functional importance of beta1 and beta2 adrenoceptors in the human heart.
Am. J. Cardiol..
1988;
62
24-29C
100
Ririe D G, MacGregor D A, Butterworth J.
Cardiotonic agents: what's new and useful.
Seminars in Anesthesia.
1994;
13
42-49
101
Honkonen E L, Kaukinen L, Kaukinen S, Pehkonen E J, Laippala P.
Dopexamine unloads the impaired right ventricle better than iloprost, a prostacyclin
analog, after coronary artery surgery.
J. Cardiothorac. Vasc. Anesth..
1998;
12
647-653
102
Schmidt H, Secchi A, Wellmann R, Bach A, Böhrer H, Martin E.
Dopexamine maintains intestinal villus blood flow during endotoxemia in rats.
Crit. Care Med..
1996;
24
1233-1237
103
Cain S M, Curtis S E.
Systemic and regional oxygen uptake and delivery and lactate flux in endotoxic dogs
infused with dopexamine.
Crit. Care Med..
1991;
19
1552-1559
104
Tighe D, Moss R, Heywood G, Al-Saady N, Webb A, Bennett D.
Goal-directed therapy with dopexamine, dobutamine, and volume expansion: effects of
systemic oxygen transport on hepatic ultrastructure in porcine sepsis.
Crit. Care Med..
1995;
23
1997-2007
105
Lund N, Asla R J, Cladis F, Papadakos P J, Thorborg P AJ.
Dopexamine hydrochloride in septic shock: effects on oxygen delivery and oxygenation
of gut, liver, and muscle.
J. Trauma.
1995;
38
767-775
106
Smithies M, Yee T H, Jackson L, Beale R, Bihari D.
Protecting the gut and the liver in the critically ill: effects of dopexamine.
Crit. Care Med..
1994;
22
789-795
107
Maynard N D, Bihari D J, Dalton R N, Smithies M N, Mason R C.
Increasing splanchnic blood flow in the critically ill.
Chest.
1995;
108
1648-1654
108
Boyd O, Grounds R M, Bennett E D.
A randomized clinical trial of the effect of deliberate perioperative increase of
oxygen delivery on mortality in high-risk surgical patients.
J. Am. Med. Ass..
1993;
270
2699-2707
109
Hannemann L, Reinhart K, Meier-Hellmann A, Wallenfang G, Bredle D L.
Dopexamine hydrochloride in septic shock.
Chest.
1996;
109
756-760
110
Uusaro A, Ruokonen E, Takala J.
Gastric mucosal pH does not reflect changes in splanchnic blood flow after cardiac
surgery.
Br. J. Anaesth..
1995;
74
149-154
111 Hines R.
New cardiotonic agents. In: Barash PG (Hrsg.) ASA refresher courses in anesthesiology. 22. Aufl. Lippincott
Philadelphia; 1994: 153-168
112
Geisser W, Träger K, Hähn A, Georgieff M, Ensinger H.
Metabolic and calorigenic effects of dopexamine in healthy volunteers.
Crit. Care Med..
1997;
25
1332-1337
113
Fitton A, Benfield P.
Dopexamine Hydrochloride. A review of its pharmacodynamic and pharmacokinetic properties
and therapeutic potential in acute cardiac insufficiency.
Drugs.
1990;
39
308-330
114
Colucci W S, Wright R F, Braunwald E.
New positive inotropic agents in the treatment of congestive heart failure. Mechanisms
of action and recent clinical developments (second of two parts).
N. Engl. J. Med..
1986;
314
349-358
115
Thormann J, Kramer W, Kindler M, Kremer P, Schlepper M.
Bestimmung der Wirkkomponenten von Amrinon durch kontinuierliche Analyse der Druck-Volumenbeziehungen;
Anwendung der Conductance-(Volumen)-Kathetertechnik und der schnellen Laständerung
durch Ballonokklusion der Vena cava inferior.
Z. Kardiol..
1987;
76
530-540
116
Scholz H, Dieterich H A, Schmitz W.
Zum Mechanismus der positiven Wirkung von Phosphodiesterase-Hemmstoffen.
Z. Kardiol..
1991;
80 (Suppl. 4)
6
117
Packer M, Carver J R, Rodeheffer R J, Ivanhoe R J, DiBianco R, Zeldis S M, Hendrix G H,
Bommer W J, Elkayam U, Kukin M L, Mallis G I, Sollano J A, Shannon J, Tandon P K,
DeMets D L.
Effect of oral milrinone on mortality in severe chronic heart failure.
N. Engl. J. Med..
1991;
325
1468-1475
118
DiBianco R.
Acute positive inotropic intervention: The phosphodiesterase inhibitors.
Am. Heart J..
1991;
121
1871-1875
119
Das P A, Skoyles J R, Sherry K M, Peacock J E, Fox P A, Woolfrey S G.
Disposition of milrinone in patients after cardiac surgery.
Br. J. Anaesth..
1994;
72
426-429
120
Konstam M A, Cody R J.
Short-term use of intravenous milrinone for heart failure.
Am. J. Cardiol..
1995;
75
822-826
121
Anderson J L, Baim D S, Fein S A, Goldstein R A, LeJemtel T H, Likoff M J.
Efficacy and safety of sustained (48 hour) intravenous infusions of milrinone in patients
with severe congestive heart failure: a multicenter study.
J. Am. Coll. Cardiol..
1987;
9
711-722
Dr. med. W. Schütz
Universitätsklinik für Anästhesiologie
Steinhövelstr. 9
D-89075 Ulm
Email: wolfram.schuetz@medizin.uni-ulm.de